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A B S T R A C T   

Forest management has the potential to contribute to the removal of greenhouse gasses from the atmosphere via carbon sequestration and storage. To identify 
management actions that will maximize carbon removal and storage over the long term, models are needed that accurately and realistically represent forest responses 
to changing climate. The most widely used growth and yield model in the United States (U.S.), the Forest Vegetation Simulator (FVS), which also forms the basis for 
several forest carbon calculators, does not currently include the direct effect of climate variation on tree growth. We incorporated the effects of climate on tree 
diameter growth by combining tree-ring data with forest inventory data to parameterize a suite of alternative models characterizing the growth of three dominant 
tree species in the arid and moisture-limited state of Utah. These species, Pinus ponderosa Dougl. ex Laws, Pseudotsuga menziesii var. glauca Mayr (Franco), and Picea 
engelmannii Parry ex Engelm., encompass the full elevational range of montane forest types. The alternative models we considered differed progressively from the 
current FVS large-tree diameter growth model, first by changing to an annual time step, then by adding interannual climate effects, followed by model simplification 
(removal of predictors), and finally, complexification, including effects of spatial variation in climate and two-way interactions between predictors. We validated 
diameter growth predictions from these models with independent observations, and evaluated model performance in terms of accuracy, precision, and bias. We then 
compared predictions of future growth made by the existing large-tree diameter growth model used in FVS, i.e., without climate effects, to those of our updated 
models, including those with climate effects. We found that simpler models of tree growth outperform the current FVS model, and that the incorporation of climate 
effects improves model performance for two out of three species, in which growth is currently overpredicted by FVS. Diameter growth projected with improved, 
climate-sensitive models is less than the future tree growth projected by the current climate-insensitive FVS model. Tree rings can be used to identify and incorporate 
drivers of growth variation into a stand-level growth and yield model, giving more accurate predictions of the carbon uptake potential of forests under climate 
change.   

1. Introduction 

Forests provide many ecosystem services, including the provisioning 
of timber resources, habitat for wildlife, and, importantly, climate 
regulation through carbon storage and sequestration. Indeed, forests are 
an important component of the global carbon cycle; they are estimated 
to be responsible for a net global sink of 1.1 ± 0.8 Pg year–1 of carbon 
(Pan et al., 2011). This critical role in the carbon cycle is recognized at 
an international scale, with countries planning to rely substantially upon 
forests to meet emissions reduction targets, in order to limit global 
warming to 1.5–2 ◦C (Grassi et al., 2017). The United States (U.S.), for 
example, plans to meet its target partly by enhancing its forest carbon 
sink through forest protection and management (The United States of 
America Nationally Determined Contribution, 2021). Improved forest 

management is recognized as a natural climate solution (Fargione et al., 
2018; Griscom et al., 2017) or negative emissions technology (National 
Academies of Sciences, 2019). For forest management to contribute to 
these emission reduction targets, forest managers need scale- 
appropriate decision support tools to help choose between alternative 
management actions that might be proposed to create additional carbon 
sequestration or storage (i.e., additionality) over long time scales (i.e., 
permanence) or reduce the risk of forest carbon loss through disturbance 
(i.e., reversal; Giebink et al., 2022). And, importantly, these tools should 
take into account the impact of changing climate. 

A great diversity of models can simulate forest ecosystem dynamics 
(Albrich et al., 2020), ranging from process-based, such as gap models 
(Bugmann, 2001;Shugart et al., 2018), forest landscape models (Shifley 
et al., 2017), dynamic global vegetation models (Fisher et al., 2018; 
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Foley et al., 1996; Sitch et al., 2003), and biogeochemical models (e.g. 
Running and Coughlan, 1988), to empirical, such as stand-level growth 
and yield models (Peng, 2000; Porté and Bartelink, 2002; Weiskittel 
et al., 2011). These broad classes of models each have a range of 
complexity or realism, i.e., explicit representation of key processes, and 
hence key capabilities needed to anticipate forest dynamics, as well as 
specific areas where improvement is needed to realistically assess forest- 
based climate mitigation (Giebink et al., 2022). For example, forest 
landscape models excel at the explicit representation of spatially con
tagious forest processes, such as fire and insect outbreaks, which cause 
reversal of forest carbon stocks. Further, these models vary in terms of 
representation of vegetation structure, from cohort-based (e.g., LANDIS- 
II, Scheller et al., 2007; ED, Moorcroft et al., 2001) to individual-based 
(e.g., iLand, Seidl et al., 2012; SEIB-DGVM, Sato et al., 2007). The 
strength of empirical forestry models, in terms of anticipating and 
implementing forest-based climate mitigation, is their long history of 
development and use for site-specific forest management, and more 
recently, their use to estimate forest carbon stock, including life cycle 
analysis of carbon in wood products (Zald et al., 2016). For decades, 
they have undergone extensive parameterization and validation to 
satisfactorily represent the stand-level self-thinning process character
istic of closed-canopy forest stand development (Shifley et al., 2017; 
Weiskittel et al., 2011), and they have long been the simulation tool of 
choice used by silviculturists to make choices about forest treatments. 
Grounded in local observations, they have great potential to guide local- 
level forest management activities aimed at climate mitigation. How
ever, they often lack representation of the influence of climate on forest 
dynamics and hence should be expected to extrapolate poorly to novel 
climate conditions (Evans, 2012). 

The Forest Vegetation Simulator (FVS) is the forest growth and yield 
model most widely used in the U.S. (Dixon, 2002). FVS is both param
eterized and initialized with regionally sourced data, often from the 
USDA Forest Service’s Forest Inventory and Analysis (FIA) program. The 
FIA program was mandated in 1928 with the goal of collecting data to 
characterize the status and trends of forested lands in the U.S., and hence 
its sampling was designed to be representative of the range of forest 
conditions in each state (Burrill et al., 2018). There are 22 regional FVS 
variants that use tree-level and plot-level inventory data to simulate the 
response of a forest stand to silvicultural treatments, such as thinning, or 
other perturbations, such as prescribed fire (Crookston and Dixon, 
2005), making the expected consequences of different management 
actions easy to compare in a multiple scenario framework, as required 
by the National Environmental Policy Act. Here, we focus on the central 
growth component of FVS, the large-tree diameter growth model, 
because it strongly influences stand development in simulations (Dixon, 
2002), and it relates directly to carbon sequestration. Indeed, FVS is 
used in several forest carbon calculators (Zald et al., 2016) and is an 
approved empirical model by several carbon accounting protocols, 
including the California Air Resources Board, for estimating baseline 
carbon stocks and projecting selected carbon pools (California Air Re
sources Board, 2015). 

Relatively recently, it became possible to evaluate climate change 
impacts in FVS with an extension called Climate-FVS (Crookston et al., 
2010). Climate-FVS has several options for incorporating the effect of 
changing climate on tree growth. The first uses estimates of climatic 
suitability derived from species-level environmental envelopes (e.g., 
Rehfeldt et al., 2006) to modify expected tree growth. That is, climate 
responses are determined by modeling data on a species’ occurrence as a 
function of climate. However, evidence has accumulated, including from 
studies of trees based on forest inventory and tree-ring data, that the 
climate optimum for occurrence or abundance is frequently not the same 
as the optimum for underlying vital rates like growth (Bohner and Diez, 
2019; McGill, 2012; Pagel et al., 2020; Pironon et al., 2018; Thuiller 
et al., 2014). Hence, occurrence data may not be the best way to 
anticipate how individual tree growth will respond to shifting climate. 
The second option in Climate-FVS is to modify tree growth based on 

population-level climate responses estimated from provenance tests 
(Leites et al., 2012), which are ideal for separating genetic vs. plastic 
responses (Aitken and Bemmels, 2016; Alberto et al., 2013; Housset 
et al., 2018; Langlet, 1971). These response functions are based on the 
cumulative growth of trees a certain number of years after they were 
planted, in response to the climate that they experience at the common 
garden location (Leites et al., 2012), i.e., average growth in response to 
average climate, and how that varies among provenances. Climate-FVS 
then applies these climate responses, inferred from provenance data on 
just two species, which are categorized as a climate specialist and a 
climate generalist, to other species according to their climatic niche 
breadth, when it is known. Species for which climatic niche breadth is 
unknown are assumed to never become limited by maladaptation to 
climate (Crookston et al., 2010). This modification is a coarse repre
sentation of plastic responses to average climate conditions. 

An alternative approach to model the effect of climate variation on 
individual tree growth is to use the response to climate variability 
recorded in annual growth rings (Martin-Benito et al., 2011). Tree rings 
sampled at a broad spatial scale or across gradients can be used to 
quantify intraspecific (population-level) heterogeneity in average 
growth rate and the sensitivity of growth to interannual climate vari
ability (Canham et al., 2018; Klesse et al., 2020; McCullough et al., 
2017).That is, tree rings offer an empirical way to estimate species- 
specific responses to temporal as well as spatial variability in climate. 
Tree cores are collected easily and without harm to the tree with an 
increment borer, a tool that was invented by a forester with both prac
tical and scientific intent, i.e., to explore environmental influences on 
tree growth (Somerville, 1891). However, this original intent has been 
far from fully realized in forest management. Instead, the use of tree-ring 
data has largely been limited to estimating recent 5- or 10-yr diameter 
increment and stand age. 

We fill this gap by using the information contained in ring-width data 
on an individual tree’s response to interannual variation in climate to 
incorporate climate sensitivity into FVS. Increment cores sampled in 
FIA’s network of permanent sample plots throughout the interior 
western U.S. were recently compiled into a tree-ring data network 
(DeRose et al., 2017). This unbiased FIA tree-ring data set (Klesse et al., 
2018) presents a unique opportunity to use the rich information on 
climate effects recorded in annual growth rings, complemented by in
ventory data from their associated forest plots, to parameterize FVS 
growth models. This combination of tree-ring and forest inventory data 
makes it possible not only to build a climate-sensitive version of FVS, but 
also to look more closely at the representation of tree growth in FVS, 
including alternative combinations of predictors of tree growth, and 
how climate might interact with other drivers (e.g., competition, tree 
size). 

Hence our aim was to build a climate-sensitive and appropriately 
complex version of the large-tree diameter growth model currently used 
in FVS, based on tree-ring and forest inventory data. With this goal in 
mind, we created a suite of alternative models for three dominant spe
cies in Utah and asked: 1) what are the important drivers of growth 
variation estimated from tree-ring and forest inventory data? 2) Does the 
use of tree-ring data and climate effects improve model performance in 
terms of the accuracy, precision, and bias of growth predictions, using 
out-of-sample observations? And which among several different model 
structures performs best at predicting tree growth? Finally, 3) if model 
performance is improved with an alternative model structure, under 
changing climate, how does expected future growth, and by extension, 
carbon sequestration, differ from expected growth based on the current 
FVS model without climate effects? With this, we take a step towards 
better anticipation of the carbon sequestration potential of forest eco
systems experiencing changing climate. 
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2. Materials and methods 

2.1. Growth & yield model 

Of the regional variants of FVS, we chose to focus on the Utah variant 
(Keyser and Dixon, 2019) because of the authors’ collective familiarity 
with this variant and region (DeRose et al., 2011), and the availability of 
tree-ring data associated with FIA data (DeRose et al., 2017). In the Utah 
variant, the base large-tree (>3 in. [in], or > 7.62 cm [cm]) diameter 
growth model is a multiple regression with the following terms:  

ln(dds) = b1 + b2 * SICOND + b3 * sin(ASP-0.7854)*SL + b4 * cos(ASP- 
0.7854)*SL + b5 * SL + b6 * SL2 + b7 * ln(DBH) + b8 * (BAL/100) + b9 * CR 
+ b10 * CR2 + b11 * DBH2 + b12 * PCCF + b13 * (CCF/100)               (1) 

Where dds is 10-year predicted change in squared inside-bark diameter 
(modeled as in2 in FVS, but shown here in cm2; Dixon, 2002), and bx are 
the estimated effects (regression coefficients) of each predictor, or co
variate, with b1 an adjustment based on forest location, and b2 an 
adjustment based on the dominant species in the stand. The predictors in 
this model fall into three categories: site-level biophysical, tree-level, 
and competition variables (Table 1). 

2.2. Data 

We recalibrated the base FVS large-tree diameter growth model (Eq. 
(1)) using tree-ring data (Giebink 2022) that are part of a recently 
developed data network sourced in FIA plots across the U. S. Interior 
West region (DeRose et al., 2017), as well as tree- and plot-level data 
derived from the FIA DataMart (Forest Inventory and Analysis Data
base). Tree-ring data were linked to FIA data with a unique tree iden
tifier (i.e., TRE_CN; Burrill et al., 2018). The data used in model 
calibration were collected during periodic inventories in Utah before 
1999, mostly between 1988 and 1995, while model validation and 
projection of future tree growth used FIA data collected after the passage 
of the 1998 Farm Bill, which mandated a standardized sampling 
approach and annual data collection nationwide. Increment cores were 

taken from tree species with a majority representation on the plot in 
terms of stocking (Arner et al., 2001). Ring-width time series were 
developed from increment cores by repreparing the samples, cross
dating, and measuring ring widths according to standard dendrochro
nology protocol (DeRose et al., 2017; Speer, 2010). 

We parameterized species-specific growth models for the three most 
abundant tree species in the Utah portion of the tree-ring data network: 
Douglas-fir (Pseudotsuga menziesii var. glauca Franco) (number of trees 
with cores [n] = 111), ponderosa pine (Pinus ponderosa Douglas ex P. 
Lawson & C. Lawson) (n = 69), and Engelmann spruce (Picea engelmannii 
Parry ex Engelm.) (n = 85). These species encompass the full elevational 
gradient of montane forests in Utah (Supplementary Fig. 1). In the arid 
state of Utah, trees are generally assumed to be moisture-limited, with 
positive precipitation sensitivity and negative temperature sensitivity 
(DeRose et al., 2013). The sampled trees are evenly distributed across 
forested land in Utah, with the exception of drought-tolerant ponderosa 
pine, which is concentrated in the southern region of Utah. Most trees 
were on plots with no visible disturbance (i.e., the disturbance code 
[DISTRBCD1] from the condition [COND] table of the FIA database was 
0 or NA for 84 of the 111 [75.7%] Douglas-fir, 56 of the 69 [81.2%] 
ponderosa pine, and 67 of the 85 [78.8%] Engelmann spruce; Supple
mentary Fig. 2), after which fire damage was the most prevalent 
disturbance recorded (15.3% of Douglas-fir, 8.7% of ponderosa pine, 
and 9.4% of Engelmann spruce; Burrill et al. 2018). Most trees were on 
plots with no observable treatment (i.e., the treatment code [TRTCD1] 
from the condition table of the FIA database was NA for 82.9% of the 
Douglas-fir and 65.9% of the Engelmann spruce), with the exception of a 
high proportion of cutting observed on plots with ponderosa pine 
(68.1%; Supplementary Fig. 2). 

Climate data at 4-km resolution were downloaded from the PRISM 
Climate Group (Daly et al., 2008). Historical (1895–1980) and recent 
(1981-present) monthly total precipitation (mm), minimum average 
temperature (◦C), and maximum average temperature (◦C) were ob
tained from January 1985 to May 2020. Mean annual precipitation 
(mm) and mean annual temperature (◦C) covering the period 1981 to 
2010 were obtained as climate normals, and represent average climate 

Table 1 
Predictors in the diameter growth models. Each variable is listed with a description, units, and data source, either the FIA database or derived from it.  

Acronym Name Type Description Source 

SICOND Site index Site-level 
biophysical 

Average height in feet the site species (SISP*) is expected to attain 
in well-stocked, even-aged stands at a specified base age 
(SIBASE**), measure of site quality (Monserud, 1984) 

FIA Condition Table 

SL Slope angle Site-level 
biophysical 

To the nearest 1 percent FIA Condition Table 

sin(ASP- 
0.7854) 
*SL 

Solar radiation Site-level 
biophysical 

Radiation by eastness Calculated; aspect (ASP) obtained from FIA 
Condition Table 

cos(ASP- 
0.7854) 
*SL 

Solar radiation Site-level 
biophysical 

Radiation by northness Calculated; aspect (ASP) obtained from FIA 
Condition Table 

DBH Diameter at breast 
height 

Tree-level Bole measured in inches at 1.3 m above ground FIA Tree Table 

BAL Basal area of live trees 
larger than the subject 
tree 

Competition Measure of absolute competition from above in square feet per 
acre 

Calculated from DBH 

CR Compacted crown ratio Tree-level Percentage (0–100) of the height of a tree with live foliage, metric 
of tree vigor 

FIA TREE Table; change is calculated using the 
Weibull distribution (Dixon, 1985) 

PCCF Crown competition 
factor on the subplot 

Competition Measure of relative competition on the subplot expressed as 
percentage per acre 

Calculated as the summation of individual tree 
crown competition factor (Keyser and Dixon, 
2019; Krajicek et al., 1961) 

CCF Stand crown 
competition factor 

Competition Measure of relative competition expressed as percentage per acre Calculated as the summation of individual tree 
crown competition factor (Keyser and Dixon, 
2019; Krajicek et al., 1961) 

SDI Stand density index Competition Measure of stand stocking, trees per acre at a 25 cm DBH index Calculated using the summation method ( 
Shaw, 2006) 

* In most cases, SISP will be one of the species that define the forest type of the condition. In cases where there are no suitable site trees of the type species, other 
suitable species may be used (Burrill et al., 2018). 
** The SIBASE of the site index curve used to derive site index is typically 50 or 100 years (Burrill et al., 2018). 
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conditions. We used the online archive of Downscaled Coupled Model 
Intercomparison Project (CMIP) 3 and CMIP5 Climate and Hydrology 
Projections (https://gdo-dcp.ucllnl.org/downscaled_cmip_projections) 
to obtain future climate from an ensemble of CMIP5 climate models. 
Specifically, we downloaded the BCSD-CMIP5-Hydrology projections of 
monthly precipitation (mm) and maximum temperature (℃) at 1/8 de
gree resolution (approximately 12 km by 12 km) for all available climate 
models and representative concentration pathways (RCP, Reclamation, 
2014). Climate data were extracted for each tree using FIA plot-level 
latitude and longitude coordinates (Burrill et al., 2018). To protect 
forest landowners, latitude and longitude coordinates that are available 
to the public are truncated, or ‘fuzzed,’ but are assumed to be within one 
kilometer of actual locations (Tinkham et al., 2018). 

2.3. Calibration 

2.3.1. Annualization of focal tree size using tree rings 
The first step towards incorporating climate data into the large-tree 

diameter growth model was the annualization of the data used to cali
brate the model - that is, converting the time step the model operates on 
from ten years to one year - starting with tree size (diameter at breast 
height, DBH; Fig. 1). For trees from which increment cores were 
collected, DBH was obtained for the year of measurement (Table 1) and 
back-calculated using the ring-width data. To calculate DBH of the 
previous year, diameter increment (two times the width of the annual 
growth ring), adjusted by a species-specific bark growth factor (Keyser 
and Dixon, 2019), was subtracted from the DBH measurement (Dixon, 
2002). This process was repeated to back-calculate DBH each year for 
30 years or until the first year of ring-width measurements, whichever 
came first. We chose to truncate the time series at a maximum of 30 
years as a compromise between maximizing the information on climate 

Fig. 1. Procedure for creating the calibration dataset. Each forest plot (top) consists of focal trees, from which increment cores were sampled, and nonfocal trees, 
without increment cores. Tree ring measurements and field-measured diameter at breast height (DBH) were used to back-calculate DBH, which was then used to 
estimate the basal area ratio (BAR). Average BAR was then used to back-calculate DBH for nonfocal trees. Back-calculated DBH for both focal and nonfocal trees were 
then used to estimate time-varying predictors, whereas time-invariant predictors were taken directly from the FIA database. 
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responses and minimizing the increasing uncertainty associated with 
reconstructing past forest conditions, such as the competitive environ
ment (sometimes referred to as the “fading record”, Swetnam et al., 
1999). 

2.3.2. Back-calculation of time-varying predictors of growth 
In order to back-calculate dynamic (time-varying) predictors of tree 

growth for each year, annual DBH was needed for every tree on a plot, 
including trees that were not sampled for tree rings. Trees without 
increment cores, which contribute to the competitive environment by 
their presence on the plot, are referred to as “nonfocal” trees. To back- 
calculate DBH for nonfocal trees, we applied the basal area ratio 
(BAR) method (Dixon, 2002; Fig. 1). We estimated annual BAR specific 
to our dataset by calculating BAR for each pair of years for each tree with 
an increment core. We then assigned an average BAR to each nonfocal 
tree, first based on matching plot and species, then species, and finally, 
an average across all plots and species. Average BAR was then used to 
back-calculate DBH every year for nonfocal trees. 

With back-calculated values of DBH for all trees on a plot, we 
annualized the competition variables (Fig. 1), which included total basal 
area of live trees larger than the focal tree (BAL), crown competition 
factor on a subplot (PCCF), and crown competition factor on a plot (CCF, 
Table 1). In addition, we calculated time-varying stand density index 
(SDI) using the summation method (Shaw, 2000; Stage, 1968). 

Which trees were included in the calculation of BAL, PCCF, CCF, and 
SDI depended on the sampling design. Most trees in the calibration data 
set were sampled on plots using a variable-radius design. Consistent 
with this variable-radius design, we dropped trees from the data set if 
their distance from the sampling point was larger than the limiting 
distance for a tree of that diameter and updated the expansion factor, i. 
e., trees per acre (TPA, Burrill et al., 2018). On fixed-radius plots, all 
trees were retained and TPA was constant over time. 

A final step in the back-calculation of the competitive environment 
was to explicitly account for recently dead trees, which were assumed to 
have died in the 10 years before plot measurement (US Department of 
Agriculture, 2020). These trees were randomly assigned a mortality year 
from zero to 9 years prior to the measurement year and included in the 
calculation of competition metrics in the years prior to their death. 

Compacted crown ratio (CR) should change over time as a tree in
creases in height and the surrounding competitive environment 
changes. CR was obtained (Table 1) for the measurement year and back- 
calculated using the Weibull distribution method described by Dixon 
(1985). CR change was constrained to one percent per year, as it is in 
FVS, to avoid large changes (Keyser and Dixon, 2019). 

2.3.3. Time-invariant predictors of growth 
We treated site-level biophysical variables, including slope (SL), ra

diation terms (i.e., sin(ASP–0.7854)* SL and cos(ASP–0.7854)* SL), and 
site index (SICOND), as constant over time. We also fit growth models 
with CR treated as constant because we found poor correspondence 
between forward-calculated CR and observations of CR at remeasure
ment (Supplementary Fig. 3). 

2.3.4. Calculation of tree growth 
We calculated annual dds (cm2) from ring width (mm) observations 

(Dixon, 2002; Stage, 1973). Missing values in the calibration data set 
were either corrected or the observation was removed. Missing rings (i. 
e., ring width is zero) were replaced with the smallest ring-width mea
surement for that tree, to avoid taking the log of zero in regression 
models and as an alternative to choosing an arbitrarily small number to 
add to all observations. SICOND was corrected when site species (SISP) 
did not match the species of the tree being modeled. This correction was 
done by cross matching plots from the periodic to annual design and 
extracting the appropriate SICOND for the species. 

2.3.5. Model building - a series of tests 
We fit a series of regression models for each species to systematically 

test whether updates to the base FVS large-tree diameter growth model 
(Eq. (1)) improve model prediction (Fig. 2). The first was parameterized 
using the tree-ring data and included all terms in the species-specific 
base FVS model (i.e., Full Annual model). The second added the direct 
effect of interannual climate variation on diameter growth (i.e., Full 
Climate model). Hence the former tested the effect of annualizing 
growth with tree rings, while the latter tested the effect of incorporating 
climate sensitivities recorded in tree rings. We then tested models of 
reduced complexity through stepwise removal of non-significant terms 
in Eq. (1) (i.e., Reduced Annual and Reduced Climate models). Finally, 
we added complexity to the Reduced Climate model, including spatial 
variation in climate as a 30-year average (i.e., Climate Normals model), 
and two-way interactions (i.e, Normals + Interactions model) between 
terms. As in the large-tree diameter growth model currently used in FVS 
(Eq. (1)), all the models are multiple linear regressions that predict tree 
growth as a function of covariates. Below we first describe details that 
were common across all models, followed by details that are specific to 
certain models. 

Fig. 2. Alternative diameter growth models progressively diverged from the 
current large-tree diameter growth model in FVS (which is shown in Eq. (1)). 
First, tree rings were used to convert the model to a one-year time step 
(annualization), creating the Full Annual model. Second, interannually varying 
climate variables were added as predictors, creating the Full Climate model. 
Third, Full models were reduced based on significance, creating the Reduced 
Annual and Reduced Climate models. From the Reduced Climate model, the 
Climate Normals model was created by adding climate normals (i.e., 30-year 
average) as a predictor and their significant interactions with interannual 
climate predictors, which was then used to create the Normals + Interactions 
model by adding all other significant two-way interactions. 
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The response variable in the regression models was log-transformed 
to correct for right skew. Although a generalized linear (mixed) model 
with a gamma distribution and a log link is often used to satisfy the 
assumption of normality for positive, right-skewed data, we used a 
linear (mixed) modeling of log-transformed dds to ease integration of 
model output into FVS. In addition, residual analysis showed no 
improvement in a model with a gamma distribution and log link. 
Covariates were globally standardized by mean-centering and dividing 
by standard deviation, which facilitates model convergence and allows 
model coefficients to be interpreted as standardized effect sizes 
(Schielzeth, 2010). In order to standardize DBH and compare its effect 
against other predictors, we did not log-transform DBH (diverging from 
Eq. (1)). 

To account for correlation or clustering within the data set, we used 
linear mixed effects models, implemented in the R package lme4 (Bates 
et al., 2015). A random tree effect was tested to account for variation 
among trees in average growth rate (dds), and a random effect on DBH 
was tested to account for variation among trees in the size-related 
growth decline in growth ring widths. That is, with increasing tree 
size, ring widths generally decrease as growth is spread out over an 
increasingly larger circumference (even though larger trees actually 
grow more than smaller trees in absolute terms; Bowman et al., 2013). A 
random year effect tested for systematic variation in growth rate among 
years not accounted for by climate predictors. Tree random effects were 
not nested within plot random effects because there was little to no 
replication of trees sampled for tree rings per plot. Tree random effects 
nested within forest location random effects, which are based on na
tional forest boundaries (Keyser and Dixon, 2019), were tested as an 
analog of the location intercept adjustment in the base FVS model (b1 in 
Eq. (1)). We tested random effect structures with likelihood ratio tests. 
Model fit was further assessed for fixed effects using Akaike information 
criterion (AIC, Akaike, 1974). 

These mixed effects models take the general form:  

Y = Xβ + Zμ + ε                                                                           (2) 

Where, Y is a vector of responses (ln(dds)), X is a matrix of predictor 
variables, β is a vector of the fixed-effects regression coefficients, Z is a 
matrix of the random effects and groups (DBH, tree, year), μ is vector of 
the random effects, and ε is a vector of residuals. 

2.3.6. Alternative growth models 
Compared to the Full Annual model, the first set of species-specific 

alternative models differ by including climate data (i.e., Full Climate). 
For each species, we identified monthly and seasonal precipitation and 
temperature variables that significantly influenced growth using 
response function analyses in the R packages dplR (Bunn, 2008) and 
treeclim (Zang and Biondi, 2015). Our strategy for selecting climate 
variables differed between precipitation and temperature. Because of 
high uncertainty among climate models with respect to projected future 
precipitation, we preferred the use of precipitation variables covering a 
longer rather than a shorter time window. While preliminary analyses 
indicated seasonal precipitation variables had higher correlations with 
ring-width variability and inclusion of these terms yielded lower AIC 
scores in regressions, we chose to use total precipitation over a 16- 
month period for all species as a predictor in the diameter growth 
model, with the idea that this may make predictions of future growth 
more robust in response to changes in the timing of precipitation. Spe
cifically, we chose a 16-month period that included the previous and 
current growing season, from previous June to current September, to 
account for significant lagged climate effects. In contrast, projected 
future temperature has lower uncertainty, so we chose to use the 
monthly or seasonal temperature variables that most strongly correlated 
with ring-width variability and gave the lowest AIC. 

From these two groups of full-complexity models (Full Annual and 
Full Climate), we then created the Reduced Annual and Reduced Climate 

models. We eliminated covariates in Eq. (1) based on a lack of signifi
cance at the p = 0.05 level (R package lmerTest, Kuznetsova et al., 2017) 
and patterns of collinearity determined by variance inflation factor (VIF) 
with a threshold of 3 (R package car, Fox and Weisberg, 2019), since the 
inclusion of multiple, collinear predictors can make model inference 
unstable (Dormann et al., 2013). We retained at least one competition 
predictor based on AIC score, even if it was insignificant at the p = 0.05 
level, because we considered the density-dependent regulation of 
growth necessary to capture forest stand development. In addition to the 
three competition variables in Eq. (1) (BAL, PCCF, and CCF), we tested 
SDI as a fourth alternative predictor. Finally, models with constant CR 
were tested. Based on AIC score, several reduced model versions for each 
species were chosen to test in validation. However, for ponderosa pine, it 
was difficult to estimate effects given a small sample size, so we further 
tested statistically nonsignificant predictors, including SICOND and SL, 
and required the sign of the single competition coefficient retained to be 
negative. 

We then explored models with greater complexity. First, we added 
30-year mean annual precipitation and mean annual temperature (i.e., 
climate normals), creating the Climate Normals model, to examine 
whether spatial variation in mean annual precipitation and temperature 
affect growth. The Climate Normals model also included two-way in
teractions between climate normals and the time-varying climate pre
dictors, to evaluate possible spatial variation in climate sensitivity. 
Second, we tested all two-way interactions, building the Normals +
Interactions model. The final forms of all reduced model versions were 
chosen after checking model performance through validation. 

2.4. Validation 

We performed out-of-sample validation (Cawrse et al., 2010) by 
comparing observed diameter growth against predicted diameter 
growth in trees independent of the calibration data. Trees used in vali
dation were selected from the FIA database for the state of Utah based on 
the following criteria: they had to be alive at two sequential measure
ments, larger at the remeasurement, and on forested plots with just one 
forest condition. Under these criteria, Douglas-fir (n = 891), ponderosa 
pine (n = 384), and Engelmann spruce (n = 1144) trees selected were 
from the annualized (post-1999) design, which has a standardized fixed- 
radius sample plot design. 

All covariate data were obtained or calculated following the pro
cedures used to create the calibration data set, except DBH of nonfocal 
trees. Linear interpolation between the first and second measurement 
was used to annualize DBH of nonfocal trees. If a tree died between the 
two measurements, diameter was linearly interpolated between the first 
measurement and the estimated year of death. 

Growth of all focal trees was simulated from the initial measurement 
year to the remeasurement year using only the fixed effects in the 
alternative species-specific models created from the calibration data, 
including models with either constant or time-varying CR. We compared 
model-predicted diameter growth against observed diameter growth 
(~10-yr diameter increment) for all the tree-ring based model versions 
as well as the current FVS large-tree diameter growth model, which we 
established as a baseline for model performance. Model performance 
was quantified using three metrics derived from a regression of observed 
vs. predicted (Piñeiro et al., 2008) diameter increment: adjusted R 
squared (R2), root mean square error (RMSE), and slope of the linear 
model. We chose a subset of the models that produced optimal values of 
these performance metrics for the next step, projection of tree growth 
under future climate. 

2.5. Projection 

Trees selected from the FIA database for projection of tree growth 
included Douglas-fir (n = 995), ponderosa pine (n = 460), and Engel
mann spruce (n = 1340) in Utah from the most recent inventory, 
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measured in 2010 or after, and were alive and on forested plots with just 
one condition. 

Growth was projected using four high-performing growth models: 
Reduced Annual, Reduced Climate, Climate Normals, and Normals +
Interactions (Fig. 2). We stopped growth projections at 2060 due to the 
computational toll of repeated projection cycles. All covariates were 
obtained from the FIA database or calculated as in validation, except the 
DBH of nonfocal trees and climate data. Growth of nonfocal trees was 
projected with FVS using 5-year projection cycles to leverage the output 
provided by FVS. This information was then annualized using linear 
interpolation. Projections in the Utah variant of FVS included mortality, 
which is distributed across the expansion factor (i.e., TPA) of each tree in 
a stand. TPA was updated every year by linearly interpolating TPA 
output from FVS. In the models that included interannually varying 
climate as a predictor of growth, i.e., Reduced Climate, Climate Nor
mals, Normals + Interactions models, PRISM data were used for years 
before 2020, whereas beginning with the year 2020 (and after), down
scaled projections of future climate (Supplementary Table 1, Reclama
tion 2014) were used. In total, these models used output from 50 
different combinations of a general circulation model (GCM) and 
emissions scenario: 21 GCM projections under the “green world” sce
nario of RCP2.6 and 29 GCM projections under the “business as usual” 
scenario of RCP8.5. In the Climate Normals and Normals + Interactions 
models, the 30-year average from 1981 to 2010 climate predictors (i.e., 
climate normals) were carried through projection to avoid space-for- 
time substitution (Klesse et al. 2020). 

We then used two methods to compare relative growth rate for each 
tree predicted by the four updated growth models (i.e., Reduced Annual, 
Reduced Climate, Climate Normals, and Normals + Interactions) against 
growth predicted by the current FVS large-tree diameter growth model. 
The first comparison was a paired-sample t-test to estimate the mean 
difference in cumulative growth for each updated growth model, GCM, 
and RCP combination (Fig. 3). Second, to examine differences in relative 
growth rate related to tree size, we used a paired-sample t-test to esti
mate the mean difference in cumulative growth for seven 5-inch diam
eter classes from 3 to 38 in. for each updated growth model, GCM, and 
RCP combination. In both methods, we filtered for significant differ
ences (p < 0.05) and further calculated the average difference across 
GCMs for each emissions scenario (RCP2.6 or RCP8.5) for the Reduced 
Climate, Climate Normals, and Normals + Interactions models. 

3. Results 

3.1. Calibration 

We fit a series of alternative growth models for each species (Fig. 2). 
All models, across species, were best fit with the same random effects 
structure. Likelihood ratio tests failed to reject models with a random 
intercept for each year and a random effect for each tree on the intercept 
and the slope of DBH (p < 0.001). The addition of a random intercept for 
each tree nested within a forest, which is analogous to FVS’s use of forest 
location code to modify average growth, did not consistently improve 
model fit to data across species. 

Response function analyses revealed that precipitation was most 
strongly correlated with ring-width index, especially previous summer 
and current summer precipitation across species (Supplementary Figs. 4- 
6). Additionally, significant correlations were positive for precipitation 
variables and negative for temperature variables across species. The 
temperature predictor that resulted in the lowest AIC score was average 
maximum monthly temperature from February to July for Douglas-fir, 
average maximum monthly temperature from June to August for pon
derosa pine, and maximum temperature of the previous August for 
Engelmann spruce. 

Collinearity among covariates was limited (VIF < 3.0); hence, none 
were dropped for this reason. Instead, we kept covariates in reduced- 
complexity models based on statistical significance (alpha = 0.05) for 

explaining variation in growth and performance in validation. Compe
tition covariates (BAL, CCF, PCCF, SDI) did not consistently explain 
variation in growth across species (Figs. 4a, 5a and 6a). While the cur
rent species-specific FVS models include more than one competition 
parameter, we kept one competition variable for each species-specific 
model parameterized with tree-ring data, which was sufficient to 
explain the negative effect of competition. We dropped the northness 
and eastness radiation terms because their effects were not significant 
and were inconsistent across species. 

With standardized predictors across models, effect sizes were based 
on the magnitude of the coefficient (Schielzeth, 2010). In all models, 
DBH had the largest effect on diameter growth (Figs. 4a, 5a and 6a). A 
positive effect of the linear term and a negative effect of the quadratic 
term indicated that at the smallest DBH values, diameter increment in
creases with increasing DBH, whereas at larger values of DBH, diameter 
increment declines with increasing DBH. Across all three species, the 
effect of precipitation on growth was positive, whereas the effect of 
temperature was negative, as expected. In addition, the interaction be
tween interannual precipitation and temperature was positive, implying 
that a higher value of one resulted in a greater, more positive effect of 
the other (Figs. 4b, 5b and 6b). Variables describing competitive pres
sure (BAL, CCF, SDI) had the smallest effect for all species (Figs. 4a, 5a 

Fig. 3. Procedure for comparing tree growth projected (~2010–2060) by the 
baseline Forest Vegetation Simulator (FVS) against high-performing, updated 
diameter growth models parameterized with tree-ring data. The growth of a set 
of trees selected from the FIA database was simulated using both the baseline 
FVS model (Eq. (1)) and each of the updated models listed (Reduced Annual, 
Reduced Climate, Climate Normals, or Normals + Interactions), using global 
circulation model (GCM) and climate scenario (either RCP2.6 or RCP8.5) 
combinations listed in Supplementary Table 1. At the end of the projection 
period, each tree’s relative growth rate (RGR) was calculated for each combi
nation of model, GCM, and RCP. A paired sample t-test was used to estimate the 
average difference in projected growth between FVS and the output of each 
updated model, GCM, and RCP combination. These estimated differences were 
used to calculate the mean difference across GCMs for each model and 
RCP scenario. 
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and 6a). While interannual climate and competition had small effect 
sizes, they also had the smallest standard error estimates, indicating 
high confidence in those effects. In all three species, adding climate 
normals made the interaction between interannual precipitation and 
temperature no longer significant. 

3.1.1. Douglas-fir 
30-year normal temperature significantly explained variation (across 

space) in growth, whereas 30-year normal precipitation did not 
(Fig. 4a). When climate normals were added, mean annual temperature 
became the largest, positive climate effect. The interaction between 
interannual and normal precipitation and the interaction between 
interannual temperature and normal precipitation was significant, 
indicating that there is spatial variation in the climate-sensitivity of 
Douglas-fir growth. The former was a negative effect, such that at higher 
average precipitation there is less of a positive effect of precipitation on 
growth (Fig. 4c), while the latter was a positive effect, such that at 
higher average precipitation there is less of a negative effect of tem
perature on growth (Fig. 4d). The interaction of SDI with both precipi
tation variables (interannual and normal) was significant. The 
interaction of SDI with interannual precipitation was positive, indi
cating that at high stand density there was a more positive effect of 
interannual precipitation on growth (Fig. 4e), while the interaction with 
normal precipitation was negative, indicating that at higher average 
precipitation there was a more negative effect of competition on growth 
(Fig. 4f). 

3.1.2. Ponderosa pine 
Precipitation and temperature normals did not themselves explain 

variation in ponderosa pine growth, but interactions between climate 
normals and other variables did significantly explain growth variation, 
including the interaction between interannual precipitation and both 
precipitation and temperature normals, as well as the interaction be
tween BAL and 30-year normal precipitation (Fig. 5a). As with Douglas- 
fir, the interaction between interannual and normal precipitation was 
negative (Fig. 5c). The interaction between interannual precipitation 
and normal temperature was positive, indicating that at higher average 
temperature there is a more positive effect of precipitation on growth 
(Fig. 5d). The interaction between BAL and normal precipitation was 
negative, indicating that at high average precipitation there is a more 
negative effect of competition on growth (Fig. 5e). 

3.1.3. Engelmann spruce 
Climate normals alone did not significantly explain growth vari

ability, but interactions between interannual precipitation and both 
climate normals (precipitation and temperature) were significant, as 
well as the interaction between interannual and normal temperature and 
between the competition variable BAL and interannual precipitation 
(Fig. 6a). As with ponderosa pine, the interaction between interannually 
varying precipitation and 30-year normal precipitation was negative 
(Fig. 6c), and the interaction between inter-annually varying precipi
tation and 30-year normal temperature was positive (Fig. 6d). The 
interaction between inter-annually varying temperature and 30-year 
normal temperature was negative, indicating that at higher average 
temperature there is a more negative effect of temperature on growth 

Fig. 4. Estimates of effects from Douglas-fir growth models. Standardized regression coefficients and their standard errors are shown in (a) for the predictors in all six 
models described in Fig. 2 and the text. Marginal effects of interaction terms on the growth response (dds) are shown, including the interaction between interannually 
varying precipitation (i.e., total precipitation [Precip] from previous June to current September [jun-SEP]) and interannually varying temperature (i.e., mean 
monthly max temperature [Temp] from current February to July [FEB-JUL]) (b), Precip (jun-SEP) and normal precipitation (Precip Normal) (c), Temp (FEB-JUL) and 
Precip Normal (d), Precip (jun-SEP) and stand density index (SDI) (e), and SDI and Precip Normal (f). Each of these panels shows one main effect (on the x-axis) 
conditional on the 25th, 50th, and 75th quantile of the other main effect (indicated in the panel title) with a 95% confidence interval around the prediction. Predicted 
effects are only plotted for known observations falling within the 95% confidence interval of the quantile. 
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(Fig. 6e). Finally, the interaction between BAL and interannual precip
itation was positive, indicating that at higher levels of competition there 
is a more positive effect of precipitation on growth (Fig. 6f). 

3.2. Validation 

Across all species, the parameterization of growth models with tree- 
ring data improved performance compared to the baseline FVS large- 
tree diameter growth model with respect to the slope of the regression 
of observed vs. predicted diameter growth increment (Reduced Annual 
model, Fig. 7a). Across all metrics, the full models (Full Annual and Full 
Climate) did not perform better than the baseline FVS model, with the 
exception of the Full Climate model for ponderosa pine, which had a 
higher slope (Fig. 7a). For ponderosa pine and Engelmann spruce, all of 
the reduced models (Reduced Annual, Reduced Climate, Climate Nor
mals, Normals + Interactions) outperformed the baseline FVS model in 
terms of slope (Fig. 7a). Model predictive performance was greatest with 
the Reduced Annual model for Douglas-fir, the Reduced Climate model 
for ponderosa pine, and both the Climate Normals and Normals + In
teractions models for Engelmann spruce. For ponderosa pine, it was the 
baseline FVS model that had the lowest RMSE (0.5278) and highest R2 

(0.0728), compared to RMSE of 0.5305 and R2 of 0.0633 of the Reduced 
Climate model, however, the match between predicted and observed 
diameter increment was greatly improved by the Reduced Climate 
model (slope of 0.5626 vs 0.1906). Overall, slope proved to be a better 
metric to compare alternative models, since it varied more widely within 
each species than the other two metrics of model performance. Although 

absolute values of RMSE and R2 were low, values were consistent with 
out-of-sample validation, where only fixed effects are used in prediction 
(Supplementary Table 2). 

Among the models parameterized with tree-ring data, the reduced 
models had higher performance than the full models across all three 
validation metrics. Adding climate predictors (both time-varying and 
normals) to Douglas-fir growth models lowered performance, in terms of 
slope, however, the Reduced Climate model performed indistinguish
ably well (i.e., high overlap in the confidence intervals) compared to the 
existing FVS growth model and the Reduced Annual model. In the case 
of ponderosa pine, adding climate normals to the Reduced Climate 
model lowered performance, whereas in the case of Engelmann spruce it 
improved performance. 

Model performance at predicting out-of-sample data did not always 
align with calibration statistics (i.e., fit to calibration data). For example, 
while the addition of climate normals to interannually-varying climate 
predictors, along with their interactions, explained more of the variation 
in the calibration ring-width data, in terms of AIC (Supplemental 
Table 2), it did not consistently (i.e., across species) lead to increased 
performance at predicting out-of-sample diameter increments. In 
another example, for ponderosa pine, although SICOND and SL were 
found to be insignificant predictors of calibration data (Fig. 5a), model 
predictive performance improved with these terms included. Finally, in 
validation, for Douglas-fir, back-calculated CR outperformed constant 
CR as a metric of tree vigor, whereas for Engelmann spruce, constant CR 
outperformed back-calculated CR. 

Fig. 5. Estimates of effects from ponderosa pine growth models. Standardized regression coefficients and their standard errors are shown in (a) for the predictors in 
all six models described in Fig. 2 and the text. Marginal effects of interaction terms on the growth response (dds) are shown, including the interaction between 
interannually varying precipitation (i.e., total precipitation [Precip] from previous June to current September [jun-SEP]) and interannually varying temperature (i.e., 
mean monthly max temperature [Temp] from current June to August [JUN-AUG]) (b), Precip (jun-SEP) and normal precipitation (Precip Normal) (c), Precip (jun- 
SEP) and normal temperature (Temp Normal) (d), and basal area of trees larger than the subject tree (BAL) and Precip Normal (e). Each of these panels shows one 
main effect (on the x-axis) conditional on the 25th, 50th, and 75th quantile of the other main effect (indicated in the panel title) with a 95% confidence interval 
around the prediction. Predicted effects are only plotted for known observations falling within the 95% confidence interval of the quantile. 
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3.3. Projection 

Across all species, the Reduced Annual model predicted greater cu
mulative relative growth rate than the current FVS large-tree diameter 
growth model (Fig. 8a, c, and e). Further, the Reduced Annual model 
predicted greater cumulative relative growth rate than models with the 
effect of climate (i.e., Reduced Climate model, the Climate Normals 
model, and the Normals + Interactions model). There were species- 
specific differences for selected models with the effect of climate 
compared to the baseline FVS model. For Douglas-fir, these models all 
predicted more cumulative growth (Fig. 8a and b), but for ponderosa 
pine (Fig. 8c and d) and Engelmann spruce (Fig. 8e and f), these models 
predicted less cumulative growth than the baseline FVS model. For 
Engelmann spruce, we found that the Climate Normals and Normals +
Interactions models had less of a reduction in cumulative growth from 
the baseline FVS model than the Reduced Climate model, but for 
Douglas-fir and ponderosa pine, the differences between these models 
were small. Across diameter classes, we found a greater difference in 
cumulative growth for lower diameter classes (Fig. 8b, d, and f). Finally, 
while the higher emission scenario, RCP8.5, on average predicted less 
growth than the lower emission scenario, RCP2.6, the difference was 
small. 

4. Discussion 

Returning to the research questions set forth for this work, we first 
asked what drives variation in tree growth. Integrating the annual- 

resolution information in tree-ring data with forest inventory data 
allowed us to quantify multiple drivers of tree growth acting simulta
neously: interannual climate variability, competition, site index, and 
other factors (Fig. 4a, 5a and 6a). Notably, climate is a significant driver 
of growth variability. As expected across the arid state of Utah, all three 
study species are positively sensitive to precipitation variability and 
negatively sensitive to temperature variability. While the estimated 
magnitude of climate effects is small (as are the effects of competition 
variables; Fig. 4a, 5a and 6a), they are well constrained, and they will 
compound over time by impacting growth year after year. 

A second question then was whether the addition of climate effects in 
FVS’s large tree diameter growth model improves prediction. Models 
parameterized with tree-ring data and simplified by removing terms (i. 
e., reduced models) consistently outperformed the Utah variant’s cur
rent large tree diameter growth model at predicting out-of-sample 
growth increments, suggesting that the existing model is overly com
plex. Beyond this, which model performed best differed between species 
(Fig. 7). Performance of the current FVS diameter growth model for 
Douglas-fir is already high, in terms of bias (Fig. 7a), such that adding 
climate effects did not improve prediction, at least not over the short 
time span of ten years. In contrast, for ponderosa pine and Engelmann 
spruce, the current FVS growth model is biased towards predicting 
larger growth increments than are observed, and the addition of climate 
effects reduced this bias (Fig. 7a), even over the short time span of ten 
years. One possible interpretation is that ponderosa pine and Engelmann 
spruce, which are found in low- and high-elevation forests in Utah, 
respectively, are more climate-limited or more exposed to the effects of 

Fig. 6. Estimates of effects from Engelmann spruce growth models. Standardized regression coefficients and their standard errors are shown in (a) for the predictors 
in all six models described in Fig. 2 and the text. Marginal effects of interaction terms on the growth response (dds) are shown, including the interaction between 
interannually varying precipitation (i.e., total precipitation [Precip] from previous June to current September [jun-SEP]) and interannually varying temperature (i.e., 
monthly max temperature [Temp] from previous August [aug]) (b), Precip (jun-SEP) and normal precipitation (Precip Normal) (c), Precip (jun-SEP) and normal 
temperature (Temp Normal) (d), Temp (aug) and Temp Normal (e), and Precip (jun-SEP) and basal area of trees larger than the subject tree (f). Each of these panels 
shows one main effect (on the x-axis) conditional on the 25th, 50th, and 75th quantile of the other main effect (indicated in the panel title) with a 95% confidence 
interval around the prediction. Predicted effects are only plotted for known observations falling within the 95% confidence interval of the quantile. 
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climate change, whereas Douglas-fir, positioned at neither elevation 
extreme, is less climate-limited or less exposed to changing climate. For 
a well-calibrated species like Douglas-fir, it may be that the addition of 
climate effects would improve prediction over a longer time frame, but 
this remains to be demonstrated. Model validation thus suggests that for 
species with low performance in FVS, parameterization with tree rings 
improves prediction of growth, and thus that a tree ring-based, climate- 
sensitive version of FVS should make more realistic estimates of the 
carbon uptake potential of trees experiencing climate change. 

Our third question concerned what future growth of the study species 
might look like, based upon improved models of growth. Projecting 
forward in time with the effect of climate change explicitly accounted 
for, we can expect reduced growth of ponderosa pine and Engelmann 
spruce, compared to what is predicted by the current FVS model (Fig. 8c- 
f). In contrast, projection results suggest we might expect more growth 
for Douglas-fir than what is currently predicted by FVS (Fig. 8a and b). 
However, we caution against the interpretation that Douglas-fir in Utah 
will be resilient in the face of changing climate. For all species, adding 
the effect of climate to a tree-ring parameterized model reduced pre
dicted growth (i.e., the Reduced Annual model vs. the Reduced Climate 
model; Fig. 8a, c, and e). We suggest a sensitivity analysis be performed 
to identify the variables most strongly influencing predicted growth. 
Together, these results argue for the incorporation of climate effects into 
FVS, to better anticipate forest climate mitigation potential, and 
demonstrate the feasibility of doing so directly, using tree-ring data. In 
the following, we consider additional insights into tree growth offered 
by our analyses, and what further improvements we anticipate can be 

made to the large tree diameter growth model. 

4.1. Refined understanding of the drivers of tree growth variability 

Tree growth is influenced by several factors at once; here, we 
consider insights into these effects, starting with climate effects, and 
how they interact with other drivers, followed by the effects of compe
tition proxies. Positive precipitation sensitivity and negative tempera
ture sensitivity of the growth of all three study species is consistent with 
widespread moisture-limited tree growth across the interior western U. 
S. (Chen et al., 2010; Rinaldi et al., 2021). Unlike spruce in some parts of 
the boreal zone, where growth can be temperature-limited, high- 
elevation spruce in the western U.S. exhibits both (positive) precipita
tion and (negative) temperature signal (Buechling et al., 2017). Indeed, 
even at high latitudes, growth of Engelmann spruce can have a strong 
negative relationship with previous growing season temperature (Hart 
and Laroque, 2013). 

Beyond negative sensitivity to temperature and positive sensitivity to 
precipitation, tree-ring data allowed us to detect spatial variation in the 
sensitivity of tree growth to time-varying climate. We found stronger 
climate sensitivities (steeper slope of the response to time-varying 
climate) at dry and warm locations (Fig. 4c and d, Fig. 5c and d, and 
Fig. 6c-e), confirming the hypothesis articulated by Fritts et al. (1965) 
that spatial variation in climate sensitivity is governed by average 
climate conditions. Our interpretation is that tree growth is limited by 
soil moisture across all three of the study species and that climate 
sensitivity increases as soil moisture becomes more limiting. Tree-ring 

Fig. 7. Validation of six alternative diameter growth models (described in Fig. 2 and the text) for Douglas-fir, ponderosa pine, and Engelmann spruce. Model 
performance is assessed in terms of adjusted R2, root mean square error (RMSE), and the slope of the linear regression of observed vs. predicted diameter growth 
increment. Confidence intervals for adjusted R2 and RMSE were derived from bootstrapping. 

C.L. Giebink et al.                                                                                                                                                                                                                              



Forest Ecology and Management 517 (2022) 120256

12

data make it possible to capture heterogeneity in climate response 
beyond the location adjustment provided by the current FVS growth 
model and at higher temporal resolution than Climate-FVS. This het
erogeneity seems to be particularly important in Engelmann spruce, 
since projected reductions in growth caused by negative temperature 
sensitivity were less extreme when spatial variation in climate sensi
tivity was explicitly accounted for (the Climate Normals and Normals +
Interactions models in Fig. 8c). For a high-elevation species, accounting 
for heterogeneity in growth-limiting factors may be critical to identify 
areas of greater vs. lesser vulnerability to climate change. 

By incorporating the effect of climate on growth directly in a mul
tiple regression model, rather than through the climate envelope 
approach of Climate-FVS, we were able to explicitly model interactions 

between climate and tree- or stand-level characteristics. These in
teractions are particularly important because managers cannot manip
ulate climate, but they can influence some of the other drivers of tree 
growth that may interact with climate. For example, consistent with 
other analyses addressing the effects of both climate and competition on 
tree growth (Buechling et al., 2017), we found that competition alters 
the response of growth to climate variability. Increased competition 
within a stand increases climate sensitivities (Fig. 4e and Fig. 6f), sug
gesting that forests can be managed to mitigate the impact of climate 
variability and change by reducing stand density. In addition, we found 
climate-driven spatial variation in the response to competition: trees in a 
drier region of their climatic range are less negatively impacted by the 
presence of other trees (Fig. 4f and Fig. 5e). The benefit of more or larger 

Fig. 8. Difference in projected growth, for Douglas-fir (a-b), ponderosa pine (c-d), and Engelmann spruce (e-f), between high-performing updated models and the 
Forest Vegetation Simulator (FVS). Average difference in cumulative relative growth rate (RGR) projected for all trees (a,c,e) and for seven 5-inch diameter classes 
from 3 to 38 in. (b,d,f), comparing projections from FVS vs. a model with no climate effects (i.e., Reduced Annual) or climate effects given future scenarios of RCP2.6 
or RCP8.5 (i.e., Reduced Climate, Climate Normal, or Normals + Interactions). Negative values indicate a tree-ring-informed model predicted less growth than the 
current FVS model, whereas positive values indicate a tree-ring-informed model predicted more growth than FVS. Variation among general circulation model climate 
projections (Supplementary Table 1) is indicated by the distribution around the mean and the rug shows the distribution of tree size at the start of the projection 
time period. 
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neighbors at these sites may reflect facilitation through microclimate 
effects, but further exploration with more data, or ideally through 
experimentation, is needed to verify these effects. 

In addition to climate effects and interaction effects involving 
climate, parameterization with tree rings allowed us to critically 
examine which among several competition variables best captured 
negative density-dependent regulation. These competition variables are 
designed to capture different competitive mechanisms. One-sided 
(asymmetric) competition variables, such as BAL, consider competi
tion only from trees larger than the subject tree, with competition for 
light in mind, whereas two-sided (symmetric) competition parameters, 
such as CCF, PCCF, and SDI, consider competition from both sides of the 
diameter distribution relative to the subject tree, with competition for 
below-ground resources in mind, such as soil moisture and nutrients 
(Weiskittel et al., 2011). To capture both of these mechanisms, both 
categories of competition variables are often included in models of tree 
growth (Weiskittel et al., 2011). However, which type of competition 
variable best explains growth may depend on the ecology of the species 
(Pretzsch and Biber, 2010). Canham et al. (2004) experimentally sepa
rated the effect of aboveground and belowground competition and 
found that shade tolerant trees were more sensitive to crowding (two- 
sided) rather than shading (one-sided), supporting the idea that one- 
sided competition variables capture competition for light. But in our 
case, the competition predictors retained across species did not match 
cross-species patterns of shade tolerance. Growth in both the least shade- 
tolerant species, ponderosa pine, and the most shade-tolerant, Engel
mann spruce, was best explained by a one-sided competition variable, 
BAL. How best to represent competition in individual-tree growth and 
yield models remains a worthy area of investigation, as the process 
should be expected to vary, in mechanism and magnitude, across species 
limited by different resources or along environmental gradients. 

4.2. Opportunities for future improvement 

Our work suggests several avenues for further improvement of a 
climate-sensitive growth model in the FVS. Inference from empirical 
models depends directly on the quantity and quality of the data used in 
calibration. For example, the statistically insignificant effects in the 
ponderosa pine growth model (Fig. 5a) may reflect the limited available 
sample size (n = 69 increment cores). Further, better data on the pre
dictors in the growth model should better constrain their effects. 
Shortcomings in the predictors might include 1) not fully capturing the 
range of values of a driver during calibration, leading to extrapolation of 
effects, e.g., temperature that exceeds the historical range of variability, 
and 2) imperfect estimation of unobserved drivers, i.e., through proxies 
or observable metrics. In the following, we consider these issues for 
several predictors of growth: climate, then tree size (DBH), then 
competition, and finally site quality (SICOND). 

Tree rings offer a way to empirically estimate the climate sensitivity 
of growth for many species, but projection of future growth relies on tree 
responses to future climate being the same as their responses to past 
climate, an assumption known in dendrochronology as “uniformitari
anism” (Fritts, 1976). Violating this assumption, tree growth responses 
to climate variability are shifting with changing climate in the latter part 
of the 20th and early 21st centuries, e.g., from positive to negative 
sensitivity to temperature variability at high latitudes (Babst et al., 
2019). The general principle, that a model may fit well to calibration 
data but extrapolate poorly to novel conditions, is particularly relevant 
in a global change context (Evans, 2012). To try to capture how the 
climate sensitivity of tree growth might change with, for example, 
increasingly warmer average temperature, we included an interaction 
between average and interannual climate predictors. However, this 
approach relies on space-for-time substitution (Pickett, 1989), which 
assumes that the past response of a tree at a warmer (on average) 
location can be projected (substituted) for a tree at a currently cooler 
location when it experiences a warmer future. This assumption is 

problematic because it presumes that locally adapted genotypes can be 
treated as substitutable, or that the process of local adaptation is 
instantaneous (Klesse et al., 2020). For this reason, we did not apply 
future climate data to climate normals during projection of future 
growth, following the example of Klesse et al. (2020). Future climate 
data were used for time-varying temperature and precipitation vari
ables, so that we captured how climate sensitivities might change with 
non-stationary climate (sensu Klesse et al., 2020). 

Two other approaches that might be used in the future, in terms of 
addressing the problem of extrapolation of climate sensitivities, are first, 
to estimate a nonlinear climate response, i.e., increased climate sensi
tivity as temperature increases. Nonlinear responses can be modeled 
with a quadratic term on the time-varying climate predictors, or by 
using a GAM, spline, or other basis function. A second, slightly less 
statistical approach is to incorporate outputs from a physiological model 
driven by climate. Milner et al. (2003) linked the physiological model 
STAND-BGC to FVS, though their estimates of the relationship between 
climate and growth did not account for local adaptation (Crookston 
et al., 2005). Tree-ring data can be used to fit a model that is based on a 
more physiological understanding of tree growth (the Vaganov- 
Shashkin model; Mina et al.,2016; Tolwinski-Ward et al., 2011), and 
doing so with locally-sourced data would account for local adaptation 
with respect to non-linear or threshold-like responses of tree growth to 
increasingly warm temperatures. 

Consistent with other individual tree growth models (Monserud and 
Sterba, 1996), we found tree-level predictors, DBH and CR, to have the 
largest effect on diameter growth. Because of the magnitude of these 
effects, it is particularly important for calibration data to span the full 
range of these predictors. However, we had relatively little data on very 
large trees for calibration of the growth model (Supplementary Fig. 7); 
this skewed sample distribution can lead to bias in estimated growth 
rates (Bowman et al., 2013). Further, we note that the greatest contrast 
in predicted growth between our models vs. the current FVS model falls 
at the small tree size-class (Fig. 8b, d, and f). We suggest that data 
collection efforts should focus on broadening the diameter distribution 
by increasing the sample size of trees that are cored to include more 
small or young trees and large or old trees, so that size-related growth 
responses can be better constrained. 

A persistent challenge in forest models is historical information on 
competitive conditions - the number and size of trees in the stand. 
Without repeated measurement of trees spanning decades, the compet
itive environment must be back-calculated. This leads to error or un
certainty in competition variables, which will inevitably increasingly 
diverge from the true, but unknown past forest stand structure (Swet
nam et al., 1999). Tree rings offer a way to directly calculate attributes 
from tree- to stand-level for annual growth models, even with repeated 
measurements, in contrast to the methods used by Cao (2000) and 
Weiskittel (2007). However, for the competitive environment to be 
annualized using tree rings, increments are needed for every tree on the 
plot. To improve upon the method used here and other methods for 
back-calculation of annual stand density (Cao and Strub, 2008), we 
suggest the collection of increment cores from all trees per plot, in a 
focused study, to more precisely calculate annual competition 
predictors. 

We treated the site-level biophysical variable SICOND as constant 
through time. However, site index is a purely phenomenological mea
sure of site quality that depends on site-level properties, including soil 
properties and microclimate (Monserud et al., 2008), and can therefore 
be expected to change with climate (as well as disturbances). In Climate- 
FVS, site index change is modified proportionally with climate suit
ability, which can modify expected growth (Crookston et al., 2010). An 
alternative would be to explicitly model the factors that determine the 
height vs. age relationship quantified by site index, including the direct 
effect of climate on height growth rate. Starting with these opportunities 
for improvement, a re-engineering of the large-tree diameter growth 
model, already invoked by Pokharel and Froese (2008), could better 
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capture the processes influencing tree growth in a changing climate. 

5. Conclusion 

This work demonstrates that the addition of tree-ring data to the 
forest inventory data normally used in parameterizing the FVS large-tree 
diameter growth model makes it possible to explicitly account for an 
important driver of tree growth (climate) and increase predictive per
formance. Changing climate will modify the growth rate of trees, 
potentially altering the rate at which carbon storage potential is ach
ieved (Giebink et al., 2022) or the carbon carrying capacity of a forest 
stand, i.e., maximum SDI (Kubiske et al., 2019). Thus this update ad
dresses an important need in forest management in the U. S. - for a tree 
growth model with the direct effect of interannual climate variability. 
The workflow we have developed for three species under the Utah 
variant of FVS, which is hosted on a publicly available repository (https: 
//github.com/clgiebink/UT_FVS), can be used along with a tree-ring 
data network sourced in forest inventory plots (DeRose et al., 2017; 
Evans et al., 2021) to make locally parameterized climate-sensitive 
diameter growth models for other species and in other variants of FVS 
across the U.S. The next step is to incorporate climate-sensitive diameter 
growth models into FVS, which is a widely used decision support tool 
and carbon market-approved forest carbon calculator (California Air 
Resources Board, 2015). By incorporating the direct effect of climate 
into a stand-level management tool, targeted management, e.g., thin
ning of specific size classes, can be explored as a means to reduce these 
vulnerabilities associated with changing climate. Indeed, forest man
agers are increasingly called upon to estimate the carbon consequences 
of management decisions, and stand-level models are well-suited to do 
so (Moore et al., 2012; Puhlick et al., 2020; Zald et al., 2016). An 
annualized, climate-sensitive version of FVS, paired with an annualized 
inventory, would support near-term iterative forecasting and adaptive 
management by foresters (Dietze et al., 2018; Walters, 1986). That is, 
after a management decision is put into action based on a projection of 
forest vulnerability, incoming forest inventory measurements would 
provide observations from which to validate model projections as well 
as modify and improve the forest simulator. This sort of locally param
eterized and climate-sensitive FVS would allow foresters to better 
characterize and plan for climate vulnerability and expected climate 
impacts specific to their management unit. 
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Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R., Savolainen, O., 2013. Potential 
for evolutionary responses to climate change - evidence from tree populations. Glob. 
Chang. Biol. 19 (6), 1645–1661. 

Albrich, K., Rammer, W., Turner, M.G., Ratajczak, Z., Braziunas, K.H., Hansen, W.D., 
Seidl, R., Hickler, T., 2020. Simulating forest resilience: A review. Glob. Ecol. 
Biogeogr. 29 (12), 2082–2096. 

Arner, S.L., Woudenberg, S., Waters, S., Vissage, J., Maclean, C., Thompson, M., Hansen, 
M., 2001. National Algorithms for Determining Stocking Class, Stand Size Class, and 
Forest Type for Forest Inventory and Analysis Plots. 

Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M.P., Frank, D.C., 2019. 
Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5 
https://doi.org/10.1126/sciadv.aat4313. 
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